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Here we present a vacuum space-time, in cylindrical coordinates due to a ring shaped 
singularity. It satisfies Weyl’s equations [1], [2] for axially symmetric metrics. It was 
originally found with the aid of a toroidal metric, obtained by the conformal 
transformation [3], 
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 +=+ σψρ iaiz  Then by a coordinate transformation it is brought into 

Weyl’s form. This method of construction will be described in a paper to be published 
in the near future [4]. The potential ,U  satisfying Laplace’s Equation in toroidal 
coordinates has zero value in the disc enclosed by the ring. 
 
The metric in toroidal form is 
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This is one of Weyl’s axially symmetric metrics in a different guise. By the 
coordinate transformation 
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Abstract: We take a three dimensional Euclidian metric in toroidal coordinates and 
consider the corresponding Laplace equation. The simplest solution of this equation is 
taken. Based on this we build a Weyl space-time. This space-time is transformed to 
cylindrical coordinates. It is shown by using ‘Mathematica’ that Weyl equations in 
cylindrical coordinates are satisfied. Geodesic motion is considered along the symmetric 
axis as well as along the radii of the singularity, which is the cause of the space time. 
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this can be converted in to one of Weyl’s cylindrically symmetric metrics 
 

( ) 2222222222 φλ dredzdredteds UUU −− −+−=  
 
Then; 
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By using ‘Mathematica’ we can show that the following Weyl’s equations are 
satisfied. 
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Thus the metric is seen to assume the form 

( ) ( ) ( )zrzrUUdredzdredteds UUU ,,,,2222222222 λλφλ ==−+−= −+−  when 
transformed to that of Weyl. 
 
This metric has a singularity on the ring r = a, z = 0. 
 
A coordinate free definition for the speed of a test particle will also be given. 
Difficulties arose when trying to express the speed in terms of coordinates. For 
example when attempting to define speed along the radii one had to try several 

definitions such as .,,,,
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Speed will be defined as φtanh  where φcosh is the scalar product of the 4-velocity of 
the test particle with the 4-velocity of an observer stationed at the point through which 
the test particle is passing. Let the coordinates of the observer at rest be ( ).0,0,, rt  
Since r   is constant the 4-velocity of the observer is given by ( )0,0,0,0uu =µ  .The 
four-velocity of the test particle is ( )0,0,, 10 vvv =µ , if it is in motion along a radius, 
and ( )0,,0, 20 ννν µ =  if on the symmetry axis ( ).,0 constr == φ  
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00cosh vugvug == νµ
µνφ  (in both cases). We have to find 0u  as well as .0v  

Obviously, 0u   can be found from 1=νµ
µν uug , and it is seen that .0 Ueu −=  To find 

ds
dtv =0 , we use the abbreviated Lagrangian ,22222 reteL UU && λ+−−=  where the over-

dot represents differentiation with respect to s. 
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Therefore Ete U =&2  (say). Here E is a constant related to the initial energy of the test 
particle. 
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Speed= UeE 221tanh −−=φ  
 
 
To study some of the properties of the space-time we investigate the geodesic motion 
along the symmetric axis normal to the ring and along the radii emanating from the 
centre of the ring. 
 
For the purpose of obtaining the geodesics, we take the Lagrangian to be 

( ) 222222222 φλ &&&& rezreteL UUU −− −+−=  
 
Then the equations for the geodesics are 
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We use only the first which gives us 
 

( )constEte
ds
dtete

ds
d UUU === && 222 ,02 . 

The constant E is related to the energy of the particle. 
 
The geodesics along the radii ),0( constz == φ  are given by 
 

( ) dteEedre UUU 2
1221 −− −=− λ  

 
and along the normal )0( =r  is given by 
 

( ) dteEedze UUU 2
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If we keep φ  =constant, z =0 then, 
we get geodesic motion along a radius of the ring. 
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Here λ , U  are functions of r only. 
 
For geodesic motion along the symmetry axis: (r =0), 
we have a similar equation. 
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with U,λ  being functions of  z only. 
 
These two integrals give us two space-time diagrams involving (t, r) and (t, z). 
 
 
 Speed along the radial geodesic and (t, r) curve  
 
 
When 1,1 == Ea , radial speeds are given by 
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This shows that by the time the rest particle reaches the periphery of the ring, its 
speed approaches that of the velocity of light. 
 
For different values of E, ( 1=a ), we get: 
 

 
 
 
 



 
 
 

When 0,10 == tr ; solving [ ]
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Integrating with respect to r from 10 to 1, we get 
 

 
 
 
As can be seen, the last portion of the journey takes only an imperceptible amount of 
coordinate time. 
 



For different values of E, ( 1=a ), we get: 
 

 
 
 

 
 
 
Speed along the normal geodesics and the ( )zt,  curve 
 
The maximum speed does not reach that of light. Ultimately the test particle comes to 
rest at the centre. 
 
When 1,1 == Ea  
Speed along the normal geodesics is given by 
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For different values of E, ( 1=a ), we get: 
 

 
 



When 0,10 == tz ; Solving [ ]
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,  the time taken to reach from z = 

10 to z = 0 (centre) is as shown. 
 

 
 
 
For different values of E, ( 1=a ), we get: 
 

 
 
 
 



Conclusion 
 
The symmetric normal geodesic is well behaved, but along the radial geodesic we find 
from 10=r  to 1=r  (close to the periphery of the ring – the singularity). Inside the 
ring, from the origin (r = 0) to the periphery of the ring ( 1=r ), the speed remains 
constant for the most part. A more detailed evaluation of these geodesics might prove 
to be fruitful. 
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